Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612594

RESUMO

Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Filogenia , Regulação da Expressão Gênica , Fatores Estimuladores Upstream
2.
Lupus Sci Med ; 11(1)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637124

RESUMO

BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Fosfatidilinositol 3-Quinases , Estresse Oxidativo/genética , Aprendizado de Máquina , DNA Helicases , RNA Helicases , Enzimas Multifuncionais
3.
AIDS ; 38(6): 803-812, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578958

RESUMO

OBJECTIVES: There is conflicting data regarding the response of older people with HIV (PWH) to antiretroviral therapy (ART). The objective of this study was to evaluate the long-term immunological and virological responses, changes in regimen, and adverse drug reactions (ADRs) in older participants (50+ years) compared with younger (18-34 years) and middle-aged (35-49 years) PWH. METHODS: A retrospective review of medical records was conducted on 1622 participants who received ART in Yunnan Province, China, from 2010 to 2019. The study compared CD4+ T-cell counts, CD4+/CD8+ ratio, and relative numbers between different groups using the Kruskal-Wallis test. Cox proportional hazards regression models were used to identify variables associated with the occurrence of immune reconstitution insufficiency. The rates of immune reconstitution, incidence of ADRs, and rates of treatment change were analyzed using the chi-squared test or Fisher's exact test. RESULTS: Over 95% achieved viral load 200 copies/ml or less, with no age-related difference. However, older participants exhibited significantly lower CD4+ T-cell counts and CD4+/CD8+ recovery post-ART (P < 0.001), with only 32.21% achieving immune reconstitution (compared with young: 52.16%, middle-aged: 39.29%, P < 0.001) at the end of follow-up. Middle-aged and elderly participants changed ART regimens more because of ADRs, especially bone marrow suppression and renal dysfunction. CONCLUSION: Although the virological response was consistent across age groups, older individuals showed poorer immune responses and higher susceptibility to side effects. This underscores the need for tailored interventions and comprehensive management for older patients with HIV.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Pessoa de Meia-Idade , Idoso , Humanos , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/efeitos adversos , China , Resultado do Tratamento , Contagem de Linfócito CD4 , Carga Viral
4.
Int J Nanomedicine ; 19: 2179-2197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476280

RESUMO

Introduction: Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) are commonly occurring devastating conditions that seriously threaten the respiratory system in critically ill patients. The current treatments improve oxygenation in patients with ALI/ARDS in the short term, but do not relieve the clinical mortality of patients with ARDS. Purpose: To develop the novel drug delivery systems that can enhance the therapeutic efficacy of ALI/ARDS and impede adverse effects of drugs. Methods: Based on the key pathophysiological process of ARDS that is the disruption of the pulmonary endothelial barrier, bilirubin (Br) and atorvastatin (As) were encapsulated into an intelligent reactive oxygen species (ROS)-responsive nanocarrier DSPE-TK-PEG (DPTP) to form nanoparticles (BA@DPTP) in which the thioketal bonds could be triggered by high ROS levels in the ALI tissues. Results: BA@DPTP could accumulate in inflammatory pulmonary sites through passive targeting strategy and intelligently release Br and As only in the inflammatory tissue via ROS-responsive bond, thereby enhancing the drugs effectiveness and markedly reducing side effects. BA@DPTP effectively inhibited NF-κB signaling and NLRP3/caspase-1/GSDMD-dependent pyroptosis in mouse pulmonary microvascular endothelial cells. BA@DPTP not only protected mice with lipopolysaccharide-induced ALI and retained the integrity of the pulmonary structure, but also reduced ALI-related mortality. Conclusion: This study combined existing drugs with nano-targeting strategies to develop a novel drug-targeting platform for the efficient treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio , Células Endoteliais , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão , Síndrome do Desconforto Respiratório/terapia , Lipopolissacarídeos
5.
J Inflamm Res ; 17: 1671-1683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504696

RESUMO

Background: Research has indicated that VRK1 is essential for the tumor cell cycle. However, its prognostic and immunotherapeutic predictive significance has not been documented in hepatocellular carcinoma (HCC). Methods: The TCGA, ICGC, and GSE14520 datasets were used to investigate VRK1 expression and its predictive significance of survival outcomes. The qRT-PCR and immunohistochemistry (IHC) were used to confirm the findings. The immunotherapeutic response of VRK1 was anticipated by the IMvigor210 cohort. Lastly, the association between immune infiltration, m6A modification, and functional enrichment of differentially expressed genes (DEGs) was investigated in connection to VRK1 expression. Results: VRK1 expression was markedly elevated on both the mRNA and protein levels in HCC. In HCC patients, a high expression of VRK1 was linked to a poor prognosis. Furthermore, there was a substantial positive correlation seen between increased VRK1 expression and the response rate to anti-PD-L1 immunotherapy. Relationships between VRK1 and m6A-related genes as well as different immune cells were shown by correlation studies. Lastly, enrichment analysis revealed a tight relationship between VRK1 and important biological functions, including DNA replication, cell cycle control, and fatty acid metabolism. Conclusion: Our research reveals the potential of VRK1 as a novel biomarker for prognosis and immunotherapy response in HCC patients.

6.
Psych J ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530885

RESUMO

Information and communication technology (ICT) provides employees with convenience in communication. However, it also creates a preoccupation with and urges to respond quickly to work-related ICT messages during nonworking time, which is defined as workplace telepressure after hours (WTA). Drawing on the job demand-resource model, conservation of resource theory, and workplace anxiety theory, this study explores how and when task interdependence and dispositional workplace anxiety affect WTA and how individuals cope with WTA. A total of 269 full-time workers from an online survey panel completed questionnaires at three time-points. We found that both task interdependence and dispositional workplace anxiety are positively related to WTA. The perception of pay-for-responsiveness moderates the relationship between task interdependence and WTA, such that the relationship is significant only for employees with a strong perception of pay-for-responsiveness. Others' approval contingency of self-worth moderates the relationship between dispositional workplace anxiety and WTA, and the relationship is significant only for employees with high degrees of others' approval contingency of self-worth. Finally, WTA arising from external work requirements or the internal pursuit of achieving work goals prompts employees to generate responsiveness coping strategies. Overall, these findings suggest that task interdependence and dispositional workplace anxiety are important factors affecting employees' WTA and highlight the importance of being responsive to WTA.

7.
Sci Rep ; 14(1): 7172, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531891

RESUMO

To address the concern that biodegradable elastomers are environmental-friendly but usually associated with poor properties for practical utilization, we report a star-crosslinked poly(ethylene glycol-glycerol-itaconate-sebacate) (PEGIS) elastomer synthesized by esterification, polycondensation and UV curing, and reinforced by bacterial cellulose (BC). The interpenetrating network of primary BC backbone and vulcanized elastomer is achieved by the "in-situ secondary network construction" strategy. With the well dispersion of BC without agglomeration, the mechanical properties of PEGIS are significantly enhanced in tensile strength, Young's modulus and elongation at break. The reinforcement strategy is demonstrated to be efficient and offers a route to the development of biodegradable elastomers for a variety of applications in the future.


Assuntos
Celulose , Decanoatos , Elastômeros , Glicerol/análogos & derivados , Polímeros , Succinatos , Etilenoglicol , Teste de Materiais
8.
Polymers (Basel) ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337215

RESUMO

Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the most improved morphology was in the 30% glycerol plasticized PBAT/thermoplastic starch (TPS) composite films, characterized by the smallest and narrowest distribution of TPS particle sizes and a more uniform dispersion of TPS particles. However, the water absorption of PBAT/TPS composite films plasticized with glycerol surpassed that observed with ATBC as a plasticizer. Mechanical properties indicated insufficient plasticization of the starch crystal structure when using 10% ATBC, 20% ATBC, and 20% glycerol as plasticizers, leading to poor compatibility between PBAT and TPS. This resulted in stress concentration points under external forces, adversely affecting the mechanical properties of the composites. All PBAT/TPS composite films exhibited a negative impact on the initial thermal decomposition temperature compared to PBAT. Additionally, the haze value of PBAT/TPS composite films exceeded 96%, while pure PBAT had a haze value of 47.42%. Films plasticized with 10% ATBC, 20% ATBC, and 20% glycerol displayed lower transmittance values in the visible light region. The increased transmittance of films plasticized with 30% glycerol further demonstrated their superior plasticizing effect compared to other PBAT/TPS composite films. This study provides a simple and feasible method for preparing low-cost PBAT composites, and their extensions are expected to further replace general-purpose plastics in daily applications.

9.
Front Plant Sci ; 15: 1347842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328701

RESUMO

FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.

10.
Mikrochim Acta ; 191(3): 126, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332145

RESUMO

An ultrasensitive sandwich-type electrochemical immunosensor for pro-gastrin-releasing peptide (ProGRP) detection was constructed based on PtCu nanodendrites functionalized Au/polyaniline nanospheres (Au/PANI@PtCu). The prepared Au/PANI@PtCu nanocomposites not only possessed excellent electro-catalytic activity of H2O2 reduction due to the synergistic effect between the Au/PANI and PtCu NDs but also provided large specific surface area for detection of antibodies (Ab2) immobilization. In addition, Au nanoparticles encapsulated multi-wall carbon nanotubes (AuNPs@MWCNTs) were also applied to modify the glassy carbon electrode interface for loading numerous capture antibodies (Ab1). In the presence of target ProGRP, a sandwich-type electrochemical immunosensor showed a strong current response from the electro-catalysis of Au/PANI@PtCu toward H2O2 reduction. Benefiting from the exceptional electro-catalytic performance of Au/PANI@PtCu and the high conductivity of AuNPs@MWCNTs, the sandwich-type immunoassay exhibited remarkable sensitivity in detection. The linear range extended from 100 fg/mL to 10 ng/mL, while achieving an impressively low limit of detection of 77.62 fg/mL.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Peptídeo Liberador de Gastrina , Ouro , Peróxido de Hidrogênio , Anticorpos Imobilizados , Imunoensaio , Anticorpos
11.
Int Wound J ; 21(3): e14741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414304

RESUMO

At present, it is still controversial whether patients in intensive care unit (ICU) use tracheal intubation with or without cuff. This paper evaluates the effect of tracheal intubation with and without cuff on overall complication rate of patients with intubation in ICU. The database of PubMed, Embase, Conchrane Library and Web of Science was searched by computer, and the clinical research on intubation with and without cuff in ICU was collected. The time range was from the database establishment to November 2023. Literature was independently screened, information was extracted, and quality was assessed by two researchers. Finally, there were nine studies included, with 11 068 patients (7391 in cuff group and 3677 in non-cuff group). The results showed that the overall complication rate of cuff group was significantly lower than that of non-cuff group, and that of cuff group (RR = 0.53, p < 0.01). In addition, compared with the non-cuff group, the cuff group had a lower number of tracheal intubation changes [RR = 0.05, p < 0.01] and a lower incidence of aspiration pneumonia (RR = 0.45, p = 0.01). Compared with the non-cuff group, the cuff group had a higher incidence of oral mucosal ulcers and pharyngitis (RR = 1.99, p = 0.04), while the cuff group had a lower incidence of laryngeal edema (RR = 0.39, p < 0.01). In ICU intubation patients, the use of cuffs reduces overall complication rate in comparison to patients without cuffs. Therefore, patients with intubation in ICU can recommend tracheal intubation with cuff.


Assuntos
Cuidados Críticos , Intubação Intratraqueal , Humanos , Incidência , Intubação Intratraqueal/efeitos adversos , Unidades de Terapia Intensiva
12.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396749

RESUMO

Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.


Assuntos
Transcriptoma , Triticum , Humanos , Perfilação da Expressão Gênica , Fenótipo , Água , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
13.
J Ethnopharmacol ; 325: 117828, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325669

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Huanglian-Hongqu herb pair (HH) is a synergistic drug combination used to treat non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism underlying the therapeuticeffects of HH requires further elucidation. AIM OF THE STUDY: The present study explored the potential mechanism of HH in treating NAFLD. MATERIALS AND METHODS: UPLC-Q-TOF-MS was employed to identify the drug constituents in HH. A NAFLD rat model was induced by a high-fat diet (HFD) and treated with different doses of HH. The functional mechanism of HH in NAFLD rats was predicted using network pharmacology, metabolomics and transcriptomics. Immunohistochemistry, real-time PCR, and Western blot were performed to validate the key mechanisms. RESULTS: Pharmacodynamic assessment demonstrated that HH exhibited improvements in lipid deposition and reduced hepatic oxidative stress in NAFLD rats. Hepatic wide-target metabolomics revealed that HH primarily modulated amino acids and their metabolites, fatty acids, organic acids and their derivatives, bile acids, and other liver metabolites. The enriched pathways included metabolic pathways, primary bile acid biosynthesis, and bile secretion. Network pharmacology analysis indicated that HH regulated the key pathways in NAFLD, notably PPAR, AMPK, NF-κB and other signaling pathways. Furthermore, hepatic transcriptomics, based on Illumina RNA-Seq sequencing analyses, suggested that HH improved NAFLD through metabolic pathways, the PPAR signaling pathway, primary bile acid biosynthesis, and fatty acid metabolism. Further mechanistic studies indicated that HH could regulate the genes and proteins associated with the PPAR signaling pathway. CONCLUSION: Our findings demonstrated that the potential therapeutic benefits of HH in ameliorating NAFLD by targeting the PPAR signaling pathway, thereby facilitating a more extensive use of HH in NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Farmacologia em Rede , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fígado , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Perfilação da Expressão Gênica , Metabolômica , Ácidos e Sais Biliares/metabolismo
14.
Mol Genet Genomic Med ; 12(1): e2357, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284445

RESUMO

BACKGROUND: Newborn screening (NBS) aims to detect congenital anomalies, and next-generation sequencing (NGS) has shown promise in this aspect. However, the NBS strategy for monogenic inherited diseases in China remains insufficient. METHODS: We developed a NeoEXOME panel comprising 601 genes that are relevant to the Chinese population found through extensive research on available databases. An interpretation system to grade the results into positive (high-risk, moderate-risk, and low-risk genotypes), negative, and carrier according to the American College of Medical Genetics (ACMG) guidelines was also developed. We validated the panel to evaluate its efficacy by using data from the "1000 Genomes Project" and conducted a pilot multicenter study involving 3423 neonates. RESULTS: The NGS positive rate in the 1000 Genomes Project was 7.6% (23/301), whereas the rate was 12.0% in the multicenter study, including 3249 recruited neonates. Notably, in 200 neonates, positive per conventional NBS, 58.5% (69/118) showed results consistent with NGS. In the remaining 3049 neonates showing negative results in conventional NBS, 271 (8.9%) were positive per NGS, and nine of them were clinically diagnosed with diseases in the follow-up. CONCLUSION: We successfully designed a NeoEXOME panel for targeted sequencing of monogenic inherited diseases in NBS. The panel demonstrated high performance in the Chinese population, particularly for the early detection of diseases with no biochemical markers.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Triagem Neonatal , Humanos , Recém-Nascido , Projetos Piloto , Sequenciamento do Exoma , Triagem Neonatal/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
J Environ Manage ; 352: 120152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266528

RESUMO

Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.


Assuntos
Compostos Férricos , Substâncias Húmicas , Peróxido de Hidrogênio , Substâncias Húmicas/análise , Biomassa , Carbono/química , Guaiacol
16.
J Hazard Mater ; 465: 133433, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185086

RESUMO

Biofilms adhering to different surfaces have significant negative impacts in various fields. Cerium oxide nanoparticles can serve as mimics of haloperoxidase for biological biofilm inhibition applications. The regulation of the exposed facet of CeO2 nanoparticles influences their efficiency in various catalytic processes. However, there is still a lack of systematic studies on the facet-dependent haloperoxidase-like activity of CeO2. In the present study, the facet-dependent haloperoxidase activities and antibiofilm performance of CeO2 nanoparticles were elucidated through experiment analysis and density function theory calculation. The as-prepared CeO2 nanoparticles inhibited bacterial survival and catalyzed the oxidative bromination of quorum sensing signaling molecules, achieving biofilm inhibition performance. The antibacterial and biofilm formation suppression abilities were consistent with their haloperoxidase activities. The {111}- and {110}-facet CeO2 nanopolyhedra, as well as the {110}- and {100}-facet CeO2 nanorods, which had higher haloperoxidase activity showed better antibiofilm performance than the {100}-facet CeO2 cubes. The present findings provide a comprehensive understanding of the facet-dependent haloperoxidase-like activity of CeO2. Furthermore, engineering CeO2 morphologies with different crystal facets may represent a novel method for significantly adjusting their haloperoxidase-like activity.


Assuntos
Cério , Nanopartículas , Nanopartículas/química , Biofilmes , Percepção de Quorum , Bactérias , Cério/química
17.
ACS Nano ; 18(2): 1582-1598, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170456

RESUMO

Heterogeneity of the tumor microenvironment (TME) is primarily responsible for ineffective tumor treatment and uncontrolled tumor progression. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and obtain a satisfactory antitumor effect. However, the efficiency of current pyroptosis therapeutics, which mainly depends on a single endogenous or exogenous stimulus, is limited by the intrinsic pathological features of malignant cells. Thus, it is necessary to develop a synergistic strategy with a high tumor specificity and modulability. Herein, a synergistic nanoplatform is constructed by combining a neutrophil camouflaging shell and a self-synergistic reactive oxygen species (ROS) supplier-loaded polymer. The covered neutrophil membranes endow the nanoplatform with stealthy properties and facilitate sufficient tumor accumulation. Under laser irradiation, the photosensitizer (indocyanine green) exogenously triggers ROS generation and converts the laser irradiation into heat to upregulate NAD(P)H:quinone oxidoreductase 1, which further catalyzes ß-Lapachone to self-produce sufficient endogenous ROS, resulting in amplified ICD outcomes. The results confirm that the continuously amplified ROS production not only eliminates the primary tumor but also concurrently enhances gasdermin E-mediated pyroptosis, initiates an ICD cascade, re-educates the heterogeneous TME, and promotes a systemic immune response to suppress distant tumors. Overall, this self-synergistic nanoplatform provides an efficient and durable method for redesigning the immune system for targeted tumor inhibition.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Morte Celular Imunogênica , Piroptose , Espécies Reativas de Oxigênio , Temperatura Alta , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Chem Rec ; 24(1): e202300088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37098879

RESUMO

CoP nanomaterials have been extensively regarded as one of the most promising electrocatalysts for overall water splitting due to their unique bifunctionality. Although the great promise for future applications, some important issues should also be addressed. Heteroatom doping has been widely acknowledged as a potential strategy for improving the electrocatalytic performance of CoP and narrowing the gap between experimental study and industrial applications. Recent years have witnessed the rapid development of heteroatom-doped CoP electrocatalysts for water splitting. Aiming to provide guidance for the future development of more effective CoP-based electrocatalysts, we herein organize a comprehensive review of this interesting field, with the special focus on the effects of heteroatom doping on the catalytic performance of CoP. Additionally, many heteroatom-doped CoP electrocatalysts for water splitting are also discussed, and the structure-activity relationship is also manifested. Finally, a systematic conclusion and outlook is well organized to provide direction for the future development of this interesting field.

19.
J Ethnopharmacol ; 321: 117402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood. AIM OF THE STUDY: This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model. MATERIALS AND METHODS: DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis. RESULTS: Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites. CONCLUSION: DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/efeitos adversos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo
20.
Mater Horiz ; 11(1): 113-133, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856234

RESUMO

Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...